28.1.13

einstein

wikipedia

En 1902 no era ni mucho menos obvio que el joven físico Albert Einstein llegaría a ser aclamado como el físico más grande desde Isaac Newton. De hecho, ese año representó el momento más bajo en su vida. Recién doctorado, fue rechazado para un puesto docente por todas las universidades en las que lo solicitó. (Más tarde descubrió que su profesor Heinrich Weber le había escrito horribles cartas de recomendación, quizá en venganza porque Einstein no había asistido a muchas de sus clases). Además, la madre de Einstein se oponía violentamente a su novia, Mileva Maric, que estaba embarazada. Su primera hija, Lieserl, nacería como hija ilegítima. El joven Einstein también fracasó en los trabajos ocasionales que ocupó.

Incluso su trabajo de tutor mal pagado terminó abruptamente cuando fue despedido. En sus deprimentes cartas contemplaba la posibilidad de hacerse viajante para ganarse la vida. Incluso escribió a su familia que quizá habría sido mejor que no hubiera nacido, puesto que era mucha carga para ellos y no tenía ninguna perspectiva de éxito en la vida. Cuando su padre murió, Einstein se sintió avergonzado de que su padre hubiera muerto pensando que su hijo era un fracasado total.

Pero ese mismo año iba a cambiar la suerte de Einstein. Un amigo le consiguió un trabajo como funcionario de la Oficina de Patentes suiza. Desde esa modesta posición, Einstein iba a lanzar la mayor revolución en la historia moderna. Analizaba rápidamente las patentes que llegaban a su mesa de trabajo y luego pasaba horas reflexionando sobre problemas de física que le habían intrigado desde que era un niño.

¿Cuál era el secreto de su genio? Quizá una clave de su genio era su capacidad para pensar en términos de imágenes físicas (por ejemplo, trenes en movimiento, relojes acelerados, tejidos dilatados) en lugar de puras matemáticas. Einstein dijo en cierta ocasión que una teoría es probablemente inútil a menos que pueda ser explicada a un niño; es decir, la esencia de una teoría tiene que ser captada en una imagen física. Por eso muchos físicos se pierden en una maraña de matemáticas que no llevan a ninguna parte. Pero como Newton antes que él, Einstein estaba obsesionado por la imagen física; las matemáticas vendrían más tarde. Para Newton la imagen física fue la manzana que cae y la Luna. ¿Eran las fuerzas que hacían caer una manzana idénticas a las fuerzas que guiaban a la Luna en su órbita? Cuando Newton decidió que la respuesta era sí, creó una arquitectura matemática para el universo que repentinamente desveló el mayor secreto de los cielos, el movimiento de los propios cuerpos celestes.

(…)

Albert Einstein propuso su celebrada teoría de la relatividad especial en 1905. En el corazón de su teoría había una imagen que incluso los niños pueden entender. Su teoría fue la culminación de un sueño que había tenido desde los dieciséis años, cuando se planteó la pregunta: ¿qué sucede cuando uno alcanza a un rayo de luz? Cuando era joven, Einstein sabía que la mecánica newtoniana describía el movimiento de objetos en la Tierra y en los cielos, y que la teoría de Maxwell describía la luz. Eran los dos pilares de la física.

La esencia del genio de Einstein era que reconoció que estos dos pilares estaban en conflicto. Uno de ellos debía fallar. Según Newton, uno siempre puede alcanzar a un rayo de luz, puesto que no hay nada especial en la velocidad de la luz. Esto significaba que el rayo de luz debía parecer estacionario cuando uno corría a su lado. Pero de joven Einstein comprendió que nadie había visto nunca una onda luminosa que fuera totalmente estacionaria, es decir, como una onda congelada. Aquí la teoría de Newton no tenía sentido.

Finalmente, como estudiante universitario en Zurich que estudiaba la teoría de Maxwell, Einstein encontró la respuesta. Descubrió algo que ni siquiera Maxwell sabía: que la velocidad de la luz era una constante, con independencia de lo rápido que uno se moviera. Si uno corre al encuentro de un rayo de luz o alejándose de él, este seguirá viajando a la misma velocidad, pero eso viola el sentido común. Einstein había encontrado la respuesta a la pregunta de su infancia: uno nunca puede correr a la par con un rayo de luz, puesto que este siempre se aleja a velocidad constante, por mucho que uno corra. Pero la mecánica newtoniana era un sistema con fuertes ligaduras internas: como sucede cuando se tira de un cabo suelto, la teoría entera podía deshacerse si se hacía el más mínimo cambio en sus hipótesis. En la teoría de Newton el tiempo corría a un ritmo uniforme en todo el universo. Un segundo en la Tierra era idéntico a un segundo en Venus o en Marte. Asimismo, varas de medir colocadas en la Tierra tenían la misma longitud que varas de medir colocadas en Plutón. Pero si la velocidad de la luz era siempre constante por muy rápido que uno se moviera, sería necesario un cambio importante en nuestra comprensión del espacio y el tiempo. Tendrían que ocurrir distorsiones profundas del espacio y el tiempo para conservar la constancia de la velocidad de la luz.

Según Einstein, si uno estuviese en una nave a gran velocidad, el paso del tiempo dentro del cohete tendría que frenarse con respecto a alguien en la Tierra. El tiempo late a ritmos diferentes, dependiendo de con qué rapidez se esté uno moviendo. Además, el espacio dentro del cohete se comprimiría, de modo que las varas de medir podrían cambiar de longitud, dependiendo de la velocidad.

Y la masa del cohete también aumentaría. Si miráramos el interior del cohete con nuestros telescopios, veríamos que los relojes de su interior marchaban lentamente, la gente se movía con movimiento lento y parecían achatados. De hecho, si el cohete estuviera viajando a la velocidad de la luz, el tiempo se detendría aparentemente dentro del cohete, este se comprimiría hasta casi desaparecer y la masa del cohete se haría infinita; como ninguna de estas observaciones tiene sentido, Einstein afirmó que nada puede romper la barrera de la luz. (Puesto que un objeto se hace más pesado cuanto más rápido se mueve, esto significa que la energía de movimiento se está convirtiendo en masa. La cantidad exacta de energía que se convierte en masa es fácil de calcular, y llegamos a la celebrada ecuación E = mc2 en solo unas líneas).

Desde que Einstein derivó su famosa ecuación, millones de experimentos, literalmente, han confirmado sus revolucionarias ideas. Por ejemplo, el sistema GPS, que puede localizar la posición en la Tierra con un error de solo unos pocos metros, fallaría a menos que se añadan correcciones debidas a la relatividad. (Puesto que el ejército depende del sistema GPS, incluso los generales del Pentágono tienen que recibir formación por parte de los físicos respecto a la teoría de la relatividad de Einstein). Los relojes en el GPS cambian realmente cuando se aceleran sobre la superficie de la Tierra, como predijo Einstein.

MICHIO KAKU
“Física de lo imposible”

2 comentarios:

Unknown dijo...

El unico comentario que puedo hacer es que un blog que nos deleita con articulo tan genial como este merece un mejor titulo que "Libreta chatarra"...casi me pierdo el articulo solo porque el titulo del blog no me gustaba. Gracias por existir

Unknown dijo...

Me encanto este articulo